Określanie masy cząsteczek

Ze stosunku masy do ładunku jonu można zwykle wywnioskować, jaka była masa cząsteczkowa analizowanego związku chemicznego lub jego fragmentu. Metody jonizacji w niektórych spektrometrach mas są tak dobrane, aby ładunek (z) był dla większości jonów równy 1, a zatem przy interpretacji widma można przyjąć, że m/z odpowiada po prostu masie cząsteczkowej jonu. Masa cząsteczkowa jednokrotnie zjonizowanego jonu jest w przybliżeniu równa masie cząsteczkowej niezjonizowanej cząsteczki tylko wtedy, gdy jonizacja jest dokonywana przez dołączenie elektronu (ze względu na bardzo małą masę elektronu). Jeśli do cząsteczki dołączany jest proton, to masa jonu jest większa od masy substancji niezjonizowanej o masę protonu (1,00727646688 Da).

Masę badanego związku chemicznego określa się, na podstawie miejsca występowania w widmie sygnału powstałego z jego niepofragmentowanego jonu, przez uwzględnienie masy cząstek jonizujących, według wzoru:

m_{zw} = (m/z) * z - m_{cz}
gdzie:
mzw – masa wyjściowej cząsteczki, która ulegała jonizacji bez fragmentacji
(m/z) – wartość odczytana widma dla niepofragmentowanego jonu, odpowiadająca stosunkowi masy analizowanej cząsteczki w daltonach do liczby ładunków elementarnych (z) które niósł z sobą jon, który wygenerował analizowany sygnał;
mcz – suma mas (w daltonach) cząstek lub jonów, które nadały ładunek poprzez przyłączenie się do wyjściowej cząsteczki (masa protonu – 1,00727646688 Da; masa elektronu około 0,00054862 Da). Jeśli jonizacja następuje na skutek oderwania cząstki to jej masy nie odejmuje się a dodaje.

Jeżeli cząstką dołączaną lub odrywaną jest elektron, jego masę można pominąć.

Przykładowo na przedstawionym wyżej diagramie pik odpowiadający m/z = 435,776 Th może pochodzić od:

  • jonu posiadającego jeden ładunek elementarny, powstałego przez oderwanie elektronu z cząsteczki o masie 435,776 Da (masa elektronu jest pomijalnie mała),
  • jonu posiadającego jeden ładunek elementarny wskutek przyłączenia jednego protonu, powstałego z cząsteczki o masie 435,776 − 1,007 = 434,769 Da,
  • jonu posiadającego dwa ładunki elementarne, który powstał przez oderwanie dwóch elektronów z cząsteczki o masie 435,776 * 2 = 871,552 Da (masę dwóch elektronów pominięto),
  • jonu posiadającego dwa ładunki elementarne wskutek oderwania jednego elektronu i przyłączenia jednego protonu, powstałego z cząsteczki o masie 435,776 * 2 − 1,007 = 870,545 Da (masę elektronu pominięto),
  • jonu posiadającego dwa ładunki elementarne wskutek przyłączenia dwóch protonów, powstałego z cząsteczki o masie 435,776 * 2 − 1,007 * 2 = (435,776 − 1,007) * 2 = 869,538 Da.

Ustalenie dokładnej masy analizowanego związku nie jest oczywiste nawet z użyciem technik jonizacji nieprowadzących do fragmentacji. Znając warunki jonizacji oraz analizując całe widmo można jednak w pokazanym przykładzie odrzucić większość przypuszczalnych źródeł sygnału 435,776. W warunkach jonizacji przez elektrorozpylanie, która była zastosowana do otrzymania omawianego widma, powstanie jonu posiadającego dwa ładunki elementarne jest najbardziej prawdopodobne na skutek oderwania jednego elektronu i przyłączenia jednego protonu. W widmie występuje też pik przy wartości 870,553 Th, który najprawdopodobniej pochodzi od cząsteczki o masie 870,553 Da. Prezentowany tu wywód dotyczy analizy widma niewielkiej rozdzielczości, gdzie nie jest możliwe rozróżnienie pików izotopowych. Prezentowane widmo zostało zarejestrowane z rozdzielczością pozwalającą na rozróżnienie poszczególnych pików obwiedni izotopowej.

 

Przykład widma masowego. Widmo masowe mieszaniny peptydów wykonane przy pomocy spektrometru mas ESI-Q-TOF (spektrometr tandemowy z jonizacją typu electrospray i dwoma analizatorami – kwadrupol i TOF). Oś pozioma:stosunek masy (m) do ładunku (z) jonu. Oś pionowa: liczba zliczeń danego jonu przez detektor